
How SE Models Can Be Used to Determine theQuality of
Software Being Developed

Jacky F Wong
Clemson University

Clemson, South Carolina, USA
jackyw@clemson.edu

Mary Damilola Aiyetigbo
Clemson University

Clemson, South Carolina, USA
maiyeti@clemson.edu

Venkata Revanth Naidu Danala
Clemson University

Clemson, South Carolina, USA
vdanala@clemson.edu

Hruday Charan Reddy Santimalla
Clemson University

Clemson, South Carolina, USA
hsantim@clemson.edu

ABSTRACT
The software engineering process is highly complicated and in-
volves many steps, individuals, and tools to produce good software.
A constantly evolving field demands an equally evolving process;
organizations have created various software engineering models to
standardize general guidelines to streamline this process best. In
order to better understand the differences between each of the most
popular models and how they contribute to good quality software,
we asked, via questionnaire, software engineering professionals to
rank models they have experience within various software quality
attributes. Analyzing over forty participants’ opinions provides
insight into how software engineering models differ. Each model
has its advantages and disadvantages for creating quality software,
but our study suggests the Agile and DevOps models as creating
the highest quality code.

1 INTRODUCTION
In order to better facilitate the predictable production of well docu-
mented, maintainable, and otherwise effective software, software
engineering emerged with sets of models and methods that describe
specific development life cycles [21]. Many types of software engi-
neering models have been available for decades, and yet still more
progress is being made in software engineering models. Traditional
software development approaches can be ineffective in dealing with
rapidly changing needs, especially in modern technology services
such as social media [25]. Predictive rather than adaptive strategies
are used in conventional software development life
cycle (SDLC) methods [21].

One of the many tasks during the development of a project
in the IT industry is the implementation of software engineering
models. Companies have at least one vertical in their business
section dedicated to this, which requires entire emphasis and the
development of creative processes. A model is an abstract depiction
of the entire software engineering process, created to share and
utilize sets of techniques in order to develop better software [25].
Effective utilization of the correct software engineering model for
a project can significantly increase the efficacy of the
development team [25].

There are varieties of software development models. Bakota et al.
defined six high-level product quality characteristics that industry
experts and academic researchers alike have universally accepted:

functionality, dependability, usability, efficiency, maintainability,
and portability. Low-level quality features, which might be internal
or external, have an impact on the characteristics [3].

There are many models that modern companies use in their
software engineering. For example, this includes but is not limited to
five primary techniques: Waterfall, Iteration, V-shaped, Spiral, and
Extreme [25]. Of particular interest is the increasingly popular Agile
framework, which would fall under the umbrella of the iteration
technique previously mentioned, compared to the more traditional
waterfall model.

Agile has become ever more popular due to the prevalence of
mobile applications (apps) used on a smartphone. Due to the high
demand by users for new features, the rapid pace at which Agile
allows a team of developers to work at an appropriate pace [17].
This model has pros and cons a software engineering team must
consider, along with the specific use case, in deciding whether
to pursue its usage. If a team were to adopt one or more of the
agile methodologies, then said the team could be rewarded with
improved cost, time, quality, and productivity [20]. Additionally,
the waterfall model remains very widely used by many companies
in various forms for various reasons [25]. Although there are quite
a few disadvantages with this model(like, need to start code from
scratch if there was a requirement in the middle of this cycle), This
model has not lost its touch. The less common but still relevant
techniques are studied as well.

An area of concern for adopting any given software engineering
model is the severity of risk at various phases of software develop-
ment [5]. Many software engineering models have different risks
during their stages of development, which can contribute towards
differing quality of software [23]. For example, depending on the
specific model, a change during development could increase the
number of errors in the final code. [7, 10]. There is a method to
avoid errors from creating large disasters during critical stages of
development called proper requirements engineering, which can
help properly establish the exact "needs and wishes" of the end-
users of the software [9]. Multiple methods exist for this process
and can be adapted to the different types of models that exist for
software engineering. For example, a software development team
can take an agile approach for software engineering and apply it
to requirements engineering with varying success, and drawbacks
[6].

An additional area for consideration would include open-source
software development. This model contrasts heavily with the rel-
atively traditional closed models previously mentioned in nearly
every aspect. The quality of software developed by open source
initiatives can differ wildly due to its nature but should have some
shared characteristics compared to closed source [32]. Open source
allows a community of users to collaborate in building software, be
inside of the larger company (e.g., Microsoft - Azure, .NET, Visual
Studio Code, Windows terminal, PowerShell, and so on. Google
- Android, Angular, Chromium, Firebase, Flutter, and so on.) or
smaller, volunteer-driven groups (e.g., the Spacemacs text editor).

There is a lack of a clear answer as to which of the many software
engineering models produce the best end result of their processes:
good software. There have been studies about how individual mod-
els affect software quality, but not necessarily comparing them in
a qualitative method against each other. To this end, we have con-
ducted a study comparing the various software engineering models
and their effect on software quality from the software engineers’
point of view.

2 PROBLEM STATEMENT
Many studies [15, 18, 27] have looked into what techniques in each
software model have impacted the quality of software. However, we
want to evaluate which of these models have more significance in
affecting software quality based on the responses we get from the
survey, which will be conducted with industry experts in software
engineering. Most organizations adopt agile and DevOps because
it is fast and easy. We want to know how these models impact the
overall quality of the product. In this study, we will use a set of
adapted quality attributes as defined by [3], [8] (Fig. 1), [13], and
we will focus on three software models: Waterfall,
Agile and DevOps.

In this study, we want to answer the following research ques-
tions:

• RQ1: What is the most-used software model in organiza-
tions?

• RQ2: Is there an effect that the software engineering mod-
els waterfall, agile, and DevOps have on the quality of the
software they produce? If so, what is their effect on quality?

• RQ3: What is the difference between waterfall, agile, and
DevOps in terms of the quality of the software they produce?

• RQ4:What is the top choice of software model among de-
velopers?

3 BACKGROUND
Most organizations depend heavily on software for the companies’
day-to-day activities and to help perform complex tasks in a faster
and efficient way. These software applications are developed using
different software development methods depending on the type
and functionalities of the software being developed; hence the
choice of software development model plays a significant role in
the overall quality of software application and the development
process. However, many organizations are faced with the challenge
of choosing a suitable software development model.

Software development life cycle (SDLC) applies standard busi-
ness practices to build software applications. The development of

every software application is broken down into various stages, and
SDLC is used to outline the tasks to be performed at each stage
in the software development. The life cycle is used to define the
methodology for improving the quality of the software and the
overall development process to produce applications that are cost-
efficient and meet users’ needs [19].

3.1 Software Development Phases
SDLC comprises several stages from the planning phase, require-
ment gathering phase, design phase, implementation phase, testing
phase, and maintenance phase. The different software develop-
ment models are based on these phases of software development.
Different software development models have advantages and dis-
advantages, and choosing the suitable model is very crucial [26].
Therefore, it is necessary to measure how the choice of a software
development model affects the overall quality of the application
being developed.

The SDLC provides a series of tasks for those involved in the
application development process to follow at each stage of develop-
ment.

Planning Phase is where a feasibility study of the intended soft-
ware is being carried out, and project stakeholders evaluate the
terms of the project. The outcome of the planning phase is a clearly
defined scope and purpose of the application.

Requirement Gathering Phase involves defining the functional-
ities of the application, and it also consists in determining the
resources needed to build the project.

Design and Prototyping Phase is where features of the application
are defined in detail. It explains how users will interact with the
software and how the system will respond. It also explains in details
platforms where the software will run, how the system will interact
with other assets as well the security features of the application.

Implementation Phase is the actual coding of the application. This
phase is implemented mainly by the software developers, and at
this phase, developers follow the agreed blueprint created during
the phase to create a working software application.

Testing Phase involves validation and verification process carried
out on the software to ensure that applications developed are built
according to specified requirements. Application is deployed to
production at the Deployment Phase for access by end-users.

Maintenance Phase is performed to keep the system capable of
operating correctly without interruption. This is the process of mod-
ifying a software solution after delivery to fix defects and improve
performance. It also includes adapting software to its environment
and accommodating new user requirements [33].

3.2 Software Development Models
Some of the most popular software development life cycles are
Waterfall, V-Shaped, Incremental, Spiral, and Agile Model [2]. The
choice of these models depends on the nature of the software,
skills, and strength of team members, product time to market, and
management’s criteria.

Waterfall Model: is commonly referred to as the traditional
method. It is a relatively simple model to use, and its processes
are in a sequential downward direction through the list of phases
that must be executed. In the waterfall model, each phase must

2

Figure 1: Software Quality Characteristics Tree [8]

be completed entirely before the start of the next phase [31]. The
waterfall model requires that all the application’s requirements are
predetermined and documented. This model is usually not flexible
as any change in the requirements during the development process
may result in the project starting from scratch. However, it is easy
to estimate costs and allocate resources. The waterfall model com-
prises five phases: Analysis, design, implementation, testing, and
maintenance [4].

Incremental Model: In this model, projects are divided into
small iterations, and each iteration is a mini-waterfall process. The
output of one iteration is used as input for the next build. This pro-
cess allows further improvement even before the whole application
is completely developed. All the processes are done iteratively until
the product is entirely developed.

Spiral Model: This model is a combination of incremental and
waterfall models. In this phase, the development process is divided
into parts, and the risky parts are developed early [30]. Spiral Model
has four phases: Analysis, Evaluation, Development, and Planning
phase. Software product goes through each phase iteratively, and
the outcome of each iteration is used for evaluation to ensure that
necessary adjustments are made at the early stage.

Agile Model: The primary motivation for this model is that it
puts users’ needs first and ensures working products are released to
customers on time to respond to a changing market while improv-
ing on the features of the product on demand. Agile methodology
focuses strongly on users experience, and it relies strongly on ex-
cellent communication among team members [19, 22].

DevOps: This model allows for collaboration between develop-
ers and the operations team to deliver software and services rapidly,
reliably, and with high quality. DevOps encourages sharing tasks
and responsibilities among team members from development to
deployment and support. DevOps extends the goal of agile from
continuous development to continuous integration and release [27].

3.3 Software Quality
Quality is the most crucial factor of software development as the
success of a software project is related to meeting users’ satisfaction.
Quality describes the customer satisfaction as well as development
organization [1]. The main aim of the Software development life
cycle is to ensure delivery of quality software that meets or exceeds
users’ expectations, is cost-effective, has early time to market, and
secure. Therefore, it is the role of organizations to adopt a software
development model that ensures high-quality software products.

3

There are some misconceptions by many project teams about
the word quality. Many believe that quality is the duty of a Quality
Assurance. However, this belief is untrue because quality is every-
body’s business, and quality cannot be ensured by only a fraction
of the product team [29]. Quality must be considered at every stage
of the development, and this requires the involvement of almost all
the groups involved in the development process.

Several attributes define the quality of a software product, and
these attributes can be divided into two quality criteria: External
and Internal. External qualities are related to the user’s satisfaction
with the product when using it, while Internal qualities are code-
related, meaningful to developers [15]. Software quality attributes
are defined by fixed quality models such as ISO/IEC 25010:2011 stan-
dard. This standard defined the product quality model to compose
of eight characteristics, and these are Functional suitability, Per-
formance Efficiency, Compatibility, Usability, Reliability, Security,
Maintainability, and Portability [12, 13, 16].

Functional suitability is a view of the product’s effectiveness, and
it defines the completeness, correctness, and appropriateness of the
software product.

Performance efficiency explains the time behavior, resource use,
and capacity of the product. Performance of delivered product
may be difficult to determine during development as production
environment differs.

Compatibility describes the coexistence and interoperability of a
product between other applications.

Usability is measured by relevant product sub characteristics
such as appropriateness, recognition, learnability, operability, user-
error protection, user interface aesthetics, and accessibility.

Reliability explains how mature, available, recoverable, and fault-
tolerant a system can be when deployed.

Security attribute describes users’ confidence in how secure a
software product is in terms of confidentiality, integrity, account-
ability, and authenticity.

Maintainability measures the degree of effectiveness and effi-
ciency with which a product can be modified, and it comprises of
testability, reusability, and modifiability of a software product.

Portability is the degree of effectiveness and efficiency with
which a system or product can be transferred from one platform or
usage environment to another. It describes the adaptability, instal-
lability, and replaceability of a software system.

Hossain [15] focused on how Agile methodology enhances soft-
ware quality by evaluating how each technique in the agile model
improves quality factors of a software product. This research grouped
quality factors into three: Quality of Design, Quality of Performance,
and Quality of Adaptation, and fourteen quality characteristics in
total under these groups were observed. The result showed that the
continuous integration technique of the agile model contributed
to about 50% of the quality attributes considered in the evaluation.
Perera [27] conducted a study on the impact of DevOps practices
on software quality, and the research highlighted that quality of the
software could be improved by using CAMS (Culture, Automation,
Measurement, Sharing) framework in DevOps. Using Pearson Cor-
relation, this study tried to find the relationship between each of
the DevOps frameworks and software quality indicators standards
defined by [11]. The result obtained showed a strong relationship
between each technique of the DevOps framework and the quality

of software. The outcome of regression analysis also showed that
quality would increase if automation, measurement, culture, and
sharing were increased simultaneously in this order.

Another study by [18] mapped the agile software development
process with various quality attributes to determine the impact of
the agile model on the quality of software. [24] identified possible
practices that can be done to increase the quality of agile methodol-
ogy. [34] also concluded that the use of the agile model in software
model increases some software quality factors such as correctness,
reliability, portability, testability, efficiency, and extensibility. In
general, these studies focused on only one software model in their
research, and they evaluated the impact of software quality based
on some model techniques. This work would like to consider which
software model impacts software quality themost, mainlyWaterfall,
Agile, and DevOps.

4 STUDY DESIGN
4.1 Participants
Participants consisted of volunteers recruited online through the
social media platform LinkedIn. This platform was chosen based
on the ability to quickly reach our target population via each re-
searcher’s network of connections. Each researcher created a public
post on their own LinkedIn profile, asking volunteers to take this
study’s survey. If the reader wanted additional details, they clicked
the provided hyperlink, which brought them to the survey. The
post also asked participants to share the post themselves to gain
more exposure.

This study asked for a population of users who have had previous
experience or were currently working in software engineering or
software development. Age was restricted to adults eighteen (18)
years or older. There were no other inclusion or exclusion criteria.
No incentives were provided to participants.

4.2 Data Collection
Using Google Forms, we created survey questions. The Google
Forms platform was used to create the survey questionnaires, ask-
ing questions based on software quality that consisted of 3 main sec-
tions: Organization and Team, Experience, and Quality Attributes.
The participant’s details, such as location, current working indus-
try, and organization details, were included in the first section of
the survey. The majority of the questions were based on a rating
system that ranged from a scale of 1 to 7. Apart from software
quality questions, we asked participants about their experience in
the software industry, expertise in software methodologies, and
implementations in the software quality factors.

We gathered information from 43 industry experts. The questions
took about 15 minutes to complete on average. This information
was compiled automatically by the Google Forms software into a
spreadsheet.

4.3 Methods
The data collected from the survey was analyzed via descriptive
statistics; we calculated the mean rating of eachmentioned attribute
for the testing models. Using these mean values, represented in
histograms from respective tables, we found that each model has
its strength and weakness based on the attributes calculated. We

4

also assigned a value to the model calculated from the mean of all
its attributes.

4.4 Threats to Validity
Due to time constraints and the relatively low number of responses
from our target respondents, we could only analyze data collected
from 43 survey responses. Considering that the study tries to ana-
lyze the quality impact in more than one software model, a higher
number of responses will give a generalized view of models used
in different organizations to make accurate conclusions about our
findings. Another limitation to this study is that most of our re-
spondents are from the United States. Considering the widespread
IT application across different regions and countries, conclusions
drawn from data collected in the United States might not apply
to other countries. We want to collect responses from software
developers in different countries in future work. This additional
data will also give us insights into what software model is mainly
used in other countries and how these models impact the quality
of applications deployed in each country.

5 RESULTS
5.1 Demographics of Participants
The first section of the survey deals with the demographics of
the respondents with questions including location, industry, and
organization size. Forty-three participants responded to our survey.
Of this, most of the participants are located in the United States,
74.4%. As shown in Fig 2 below, respondents also responded from
Nigeria, Canada, The Netherlands, and Egypt. 61% of participants
work in the information technology industry, followed by education
at 19.5%; healthcare, automotive, government, and financial sectors
had participants as well. Most (54.8%) of participants work in large
organizations of 1000+ persons, while team sizes were small to
medium (76.2% of participants in teams of 2-20 people).

Figure 2: Participants locations

Industry : As expected, more than 61% of participants are work-
ing in Information Technology, 19.5% in education, 4.9% in Health-
care, Automotive, and Government, and 2.5% work in the financial
industry.

Experience: As shown in Fig 3, we also collected information
about the years of experience of the respondents to know their
exposure to the industry. 52.4% participants have experience from
1-5 years, 23.8% of them experience from 6-10 years, 19% of them
have less than one year experience, and 4.8% of the participants
have between 11 and 20 years of experience.

Figure 3: Participant Experience

Size of Organization: We also asked participants about the size of
their organizations in terms of staff capacity to understand the type
of software model organizations with different staff strengths adopt
and how large projects each participant has experienced. 54.8% of
participants work in an organization with more than 1000 people,
7.1% work with about 501-1000 people, 16.7% of the participants’
organizations have 101-500 staff. 9.5% work with the range 51 to
100, 2.4 % in the range from 11-50, and 9.5% have below ten people
in the organization. Our results show that more than 50% of the
participants work with large organizations with more than 500 staff
and 80% have more than 100 people.

Size of the team: 40.5% of the respondents work within a team
size of 6-20 people, 35.7% work less than five team members. 11.9%
of respondents work with a team size of 21-30 people. 7.1% in the
range of 31-40 team members and 4.8% have more than 40 people
in their team. 76.2% of the participants have team members of 20
people or lower.

5.1.1 RQ1: What is most-used software model in organizations?
To know the widely adopted software model among software engi-
neers, we asked the participants about the current models in their
various organizations. We also asked if each participant had prior
experience with another software model in the past. The majority
of the participant, about 72.09% (31 out of 43 respondents), said they
are using the Agile model, followed by DevOps at a far distance of
13.95%. 6.98% use the incremental model, while 4.65% of the par-
ticipants use the waterfall model. When we analyzed the software
model previously used, Waterfall and agile models were mainly
used by participants in the past, with both having 37.21%. At the
same time, DevOps was about 11.63%, and no participant indicated
using the incremental model in the past. When we compared the
currently used model with the past models used by participants
in Fig 4, we could conclude that the waterfall model is rarely used

5

SE Model General Functional Suitability Compatibility Usability Reliability Security Maintainability Portability

Waterfall 5.6 5.2 5.4 5.53 5.2 6.33 5 5.47
Agile 5.63 5.25 5.44 5.31 5.63 5.81 5.07 4.75

DevOps 6 4 6.4 6.4 5.4 5.8 5.6 5.4
Table 1: Average Rating for Past Experience

Figure 4: Past and Current Software Engineering Model Par-
ticipants Used

by organizations today as it has only about one-eighth of its pre-
vious impact. However, we can deduce that the adoption of Agile
methodology has increased from 37.21% to 72.09%. There is a slight
increase in DevOps use while the incremental model is gaining its
importance as it has a user percentage of 7.1% compared to none in
the past. Most companies are currently choosing the Agile model
over any other model.

5.2 Previous Experience
A survey section asked participants whether they had had previous
software engineering experience. If they answered yes, they were
directed to a few questions about this experience with previously
used software models and how it impacts software quality. A devel-
oper with knowledge of two or more models has a better frame of
reference as to how said models compare to each other. About 85%
of our respondents have had previous experience in at least one
software model, with 81% of them having a minimum of one year
of experience. As expected, most of them have previous experience
in Agile (37.21%) and Waterfall (37.21%) models, while 13.95% had
experiences in DevOps.

The participants were asked questions about larger umbrellas of
software quality attributes. Answers were in a 7-point rating, where
1 represents a poor score, and 7 represents the highest score. There
were no participants with experience in the Incremental, Spiral, or
other software engineering models. As shown in Table 10, DevOps
had the highest mean score of 6.0 in Functional stability, DevOps
had a mean score of 6.4 in Compatibility followed by 5.44. DevOps
also had the highest score in usability and Maintainability, with a
mean score of 6.4 and 5.6. Agile had the best score in Reliability with
a mean score of 5.63, followed by waterfall with 5.2 and DevOps
with a 4.0 mean score. Waterfall had the highest score in both

Security and Portability quality attributes. From the result shown
in the table, developers rated DevOps as the average best in terms
of software quality.

5.3 Comparison of Currently Used Models
All participants were asked about the software engineering model
they currently utilize at their work. As shown in Fig 4, the vast
majority of the participants utilize Agile in their work with 72.09%,
followed by DevOps at 13.95%. No respondents currently use Spiral
or "Other" models. So we asked them to rate the quality of the soft-
ware model used in terms of the quality attributes defined by [16]
standard, which are Functional suitability, Compatibility, Usability,
Reliability, Security, Maintainability, and Portability. Apart from
these standard attributes, we also included three additional quality
attributes that we think are standard terms among developers. We
categorized these as General Attributes; Ease of use for the devel-
opers, Developer collaboration, and software delivery speed. The
questions in the survey for participants to rate the currently used
models in terms of quality attributes were more detailed than that
of the questions we asked in previous software model experience.
For each attribute, we also asked the participants to rate the sub-
attributes of these standard quality factors; the result of the survey
are discussed below.

General Attributes: We asked participants to rate their choice
of software model in terms of ease of use for the developer: How
easy is the model to work with?; Collaboration: Does the model
allow for collaborations among developers and the entire project
team?; and speed of product delivery: How quickly does the model
get a product to the customer? The average results of the partici-
pants’ answers are shown below. We took an average of the scaling
results given by the participant for each of the software models as
shown in Table 7 below. For ease of use, Waterfall had an average
of 6.0, agile with 5.2, DevOps had 6.0, which is the same score as
Waterfall, and Incremental had the highest with 6.67. Incremental
had the highest score because it had the least number in the choice
software model. For collaboration, DevOps had the highest average
score with 6.17, while Agile, WaterFall, and Incremental models
had average scores of 5.87, 5.0, and 5.0, respectively. DevOps also
had the highest mean score of 6.0 in terms of Speed of Delivery
followed by Agile with 5.77.

Functional suitability:We asked participants to rate three sub-
attributes of the Functional Suitability quality factors in terms of:
Defects in production (To what degree does the model reduce de-
fects once in production?); Completeness (To what degree does
the software meet its specified requirements); and Correctness -
How does the software meet user expectations?. The results of
the participants’ responses are shown in table 3. For reduction in

6

SE Model Ease of use Collaboration Delivery speed

Waterfall 6 5 5
Agile 5.2 5.87 5.77

DevOps 6 6.17 6
Incremental 6.67 5 3

Table 2: Average score of General Quality Attributes

production defects, Agile had the highest mean score of 5.74, fol-
lowed by the Incremental model with 5.33. In contrast, DevOps and
Waterfall models had mean score values of 4.8 and 4.5, respectively.
For the Completeness of software, developers think of DevOps with
a mean score of 5.83. Agile had 5.67, which is the second-highest,
Incremental model was 5.33, while the Waterfall model was scored
at 5.0. Finally, DevOps also had the best score for the Correctness
sub-attribute, followed by Agile, Incremental, and Waterfall.

SE Model Production Defects Completeness Correctness

Waterfall 4.5 5 5
Agile 5.74 5.67 5.74

DevOps 4.8 5.83 5.83
Incremental 5.33 5.33 5.33

Table 3: Average score of Functional Suitability Attributes

Compatibility Participants were asked how compatible they
rated software created with their currently used software engi-
neering model. To be precise, we asked how easily the software
integrates with other applications. Average scores for compatibility
were highest for the DevOps model at 5.67, followed closely by the
Agile model at 5.64.

SE Model Compatibility

Waterfall 5.5
Agile 5.64

DevOps 5.67
Incremental 5

Table 4: Average score of Compatibility Attributes

Usability Participants were asked to rate usability on three
attributes. We asked about the initial learnability by the end-users,
or how easy is the software to pick up and use; day-to-day usability
by the end-users, or how easy is the software to use regularly after
learning how to use it; and accessibility, or (generally) how easily
do people with disability use the software. The Waterfall model
had the highest average scores across all three attributes, while the
DevOps model tied the Waterfall model to the day-to-day usability
score. For initial learnability, Waterfall scored an average of 6.5,
with DevOps having the second-highest score of 6.0. For day-to-
day usability, Waterfall and DevOps both scored a 6.0, while Agile
followed with a 5.77 score. Finally, for accessibility, Waterfall scored
a 5.5, followed by DevOps with a 5.17 score.

SE Model Learnability Usability Accessibility

Waterfall 6.5 6 5.5
Agile 5.16 5.77 4.52

DevOps 6 6 5.17
Incremental 5 5.33 3.33

Table 5: Average score of Usability Attributes

ReliabilityWe also asked participants to rate two sub-attributes
of Reliability in factors of Recoverability(How is the software re-
sponse to failure or other downtimes?) and Software Availability(To
what extent does the software provide timely and uninterrupted
access of the application?). The average results of the participants’
answers are shown in Table 7. In the case of Recoverability, the Wa-
terfall model has the least average score of 4, Agile has 5.42, DevOps
has the maximummean score of all with 5.67, and Incremental with
a mean score of 4.33. When Availability is concerned, Waterfall has
a least average score of 4.5, Agile with an average score of 5.87,
DevOps has the highest mean score of 6.17, and Incremental has
an average score of 5.67. On the whole, DevOps has the maximum
Reliability, and Waterfall has the least Reliability.

SE Model Recoverability Availability

Waterfall 4 4.5
Agile 5.42 5.87

DevOps 5.67 6.17
Incremental 4.33 5.67

Table 6: Average score of Reliability Attributes

Security We asked participants to rate Security in terms of two
attributes, Confidentiality(How secure is the software from unau-
thorized access?) and Integrity(How secure is the software from
unauthorized changes?). The average results of the participants’
answers are shown in table 7. If we look into Confidentiality, the
Waterfall model has the highest mean score of 6.5, Agile has an aver-
age score of 5.1, DevOps has a mean score of 5.5, which is the least,
and Incremental has an average mean score of 6.33. For Integrity,
the Waterfall model and DevOps both have the least mean scores
with 5.5, Agile has an average score of 5.9, and Incremental has the
highest mean score of 6.33. Waterfall has the highest confidentiality
mean score, and Incremental has the highest Integrity mean score.
However, when we see Security as a whole attribute, Incremental
has the highest Security and DevOps the least.

SE Model Confidentiality Integrity

Waterfall 6.5 5.5
Agile 6.1 5.9

DevOps 5.5 5.5
Incremental 6.33 6.33

Table 7: Average score of Security Attributes

7

Maintainability In Maintainability, participants were given
their average scores on testability and Maintainability. The amount
to which software responds to software artifacts, such as modules,
systems, and designs, enables testing in a specific software test
scenario is known as testability. If the artifact is high, it implies that
testing is a better way to find vulnerabilities. As of results shown
from table 8, DevOps has the highest average score with 5.83, which
highest artifact, Agile has 5.6 of the testing score, waterfall and In-
cremental has very less testing scores with 4.5 and 4.33. This result
says that DevOps is best in finding and solving faults in software.

When it comes to Maintainability, we ask: How easily should
software systems be adjusted to fix flaws and increase performance
with changes in the updated environment?. As if we refer to table
8 maintainability attribute shows that Agile has the highest main-
tainability average score with 5.77, following agile, DevOps has a
5.5 average score. This implies that both agile and DevOps are good
in the Maintainability of software systems. When it comes to both
Testability and Maintainability, Agile and DevOps are in the highest
position; this says that both models are good in Maintainability
quality attribute.

SE Model Testability Maintainability

Waterfall 4.5 3.5
Agile 5.6 5.77

DevOps 5.83 5.5
Incremental 4.33 4.33

Table 8: Average score of Maintainability Attributes

Portability Finally, participants will be asked to score the soft-
ware’s reusability and Portability. Reusability is a feature that makes
it simple to create new software using the same facilities and compo-
nents. "Portability" refers to how easily a product may be executed
on a different operating or hardware system. According to the aver-
age statistics from table 9, DevOps has the highest reusability rate
of 5.83, followed by Agile with a 5.42 average score. Every model
has a solid average score in Portability, but DevOps gets the highest
average score with 5.83. DevOps gets the highest average score
in both reusability and Portability, indicating that DevOps is an
excellent software paradigm in general.

SE Model Reusability Portability

Waterfall 4 5
Agile 5.42 5.52

DevOps 5.83 5.83
Incremental 4.33 5.67

Table 9: Average score of Portability Attributes

5.4 SE Model Evaluation
This section answers the remaining research questions after evalu-
ation of the data from sections 5.2 and 5.3.

5.4.1 RQ2: Is there an effect that the software engineering models
Waterfall, Agile, and DevOps have on the quality of the software they
produce? If so, what is their effect on quality?
A measure to compare each software engineering model is the
average overall quality rating for each model. Tables 10 and 11
show this rating for the previous and current SE model experience.
Each model has a distinct score, with the largest difference, 0.7, in
rating occurring between the Incremental and DevOps everyday
experience. This difference suggests that, yes, the choice of SE
model for developing software does affect software quality. Each
SE model’s effect will be discussed in RQ3 and section 6.

SE Model Average Rating

Waterfall 5.47
Agile 5.36

DevOps 5.63

Table 10: Overall Average Rating for Previous Experience

SE Model Average Rating

Waterfall 5.08
Agile 5.50

DevOps 5.74
Incremental 5.04

Table 11: Overall Average Rating for Current Experience

5.4.2 RQ3: What is the difference between waterfall, agile, and De-
vOps in terms of the quality of software they produce?
Two models represent the difference between the SE models regard-
ing the quality of the software they create.

The first model, represented by Figure 5, considers each model’s
total score as a percentage of all model’s scores for each category.
For example, participants’ scores for the Agile model’s Function-
ality under current experience constitute 68.9% of the total scores
across all models for Functionality under current experience. A
combination of many participants having experience in Agile plus
high per-participant scores for Agile software attributes result in
Agile ranking near 70% across all software quality attributes. De-
vOps ranks second with scores of approximately 15% across all
attributes. The remainder of SE models under current experience
falls into single-digit percentages. This first model suggests that
Agile produces the highest quality code, considering its popularity,
of our measured SE models.

The second model, represented by Tables 10 and 12, considers
the average score for each model for each software quality attribute
category. This model eliminates the popularity biases found in the
first model. For example, the DevOps model resulted in a mean
score of 6.06 under Functionality under current experience. On
average, each participant who selected DevOps as their currently
used SE model gave it a 6.06/7 score. This model states five of the
eight quality attribute categories are highest for DevOps under
current experience and four under experience. This superiority

8

suggests that DevOps creates software of higher quality across more
attributes when compared to other measured models. However, this
result does not consider the significantly wider adoption of the Agile
model when compared to all other models as measured.

Figure 5: Percentages of Total Score for Current Experience

5.4.3 RQ4: What is the top choice of software model among devel-
opers?
We asked the participants to rate different software models re-
garding developers’ preferences to answer this research question.
Agile methodology took the lead as the top-choice model with 61%.
However, this value is surprisingly lower than the percentages of
participants currently using the Agile model in their organizations.
DevOps follow this model preference with 22%. However, the per-
centage value increased when compared with the currently used
model. The waterfall model had 7% preference among develop-
ers, which further proves that the adoption and preference of the
waterfall model have drastically reduced. Although some organiza-
tions whose software products are less prone to changes and have
well-developed documentation and strategy still prefer to use the
waterfall model [28]. The incremental model had 3%, and about
7% of our respondents did not have any software model as their
personal preference.

Figure 6: SE Model Preferences

6 DISCUSSION
Our research tried to find the impacts of software development mod-
els on software quality. We used the quality model defined by the
ISO/IEC 25010:201 standard to rate the impact of these models. First,
we asked participants about the software model they have used in
the past, and we asked them to rate these software models used
previously on their impact on software quality attributes. We saw
that Agile andWaterfall models were mainly used bymore than half
of the participants in the past, followed by DevOps. However, the
waterfall model was rated very low in almost all the software qual-
ity attributes considered, such as functional stability, compatibility,
usability, and maintainability. This is not surprising because, in the
Waterfall model, one phase has to be completed before starting an-
other phase. This does not give room for flexibility, and requirement
change in the requirement can require that the whole development
process is started from the beginning all over again [14]. We also
saw from the results that DevOps had the highest average ratings
for functional stability, compatibility, usability, and maintainability.

Secondly, we also asked participants about the software develop-
ment they are currently using in their various organizations, and
they also rated these models on their impacts on software qual-
ity. 72.09% of the participants responded that they are currently
using Agile methodology, which is about twice the increase from
the past experience. In contrast, the use of the waterfall model
had dropped from 37.21% to 4.65%. From the rating result, which
was summarized in Table 11 for all the quality attributes, DevOps
also had the highest average rating in compatibility and usability,
similar to the rating from past experience. In addition, DevOps
was also rated the highest in the General attributes (ease of use,
collaboration, and speed of delivery), reliability, and portability.
Agile methodology was also rated high for functional suitability
and maintainability, while the incremental model was rated high
for security. Even though most of our respondents currently use
Agile methodology, it was surprising that DevOps had the highest
ratings overall. We think this is because the few who chose DevOps
gave it excellent scores in all the quality attributes. However, when
we considered using the percentage value of the ratings, we saw
that Agile methodology had the highest percentages overall for all
the quality attributes. The waterfall model was rated the lowest
overall, with as low as 4.0 in maintainability.

Finally, we asked the participants about their preferred choice
of software development model, and about 61% said they preferred
the Agile model the most, while waterfall and incremental models
were the least preferred software models among our participants

7 CONCLUSION
From our results, we can say that the DevOps model has the max-
imum average score in the case of both previous software model
experience and current model ratings. Although Waterfall was
closely rated with Agile in the past experience, it has the minimum
ratings on software quality. The challenge here is that there are
not many participants, and because of that, we cannot accurately
rate the models based on these ratings. Also, from our results, we
cannot conclude why DevOps did not have many organizations
using it despite having the highest software quality ratings than
Agile.

9

SE Model General Functional Suitability Compatibility Usability Reliability Security Maintainability Portability

Waterfall 5.33 4.83 5.5 6 4.25 6 4 4.5
Agile 5.61 5.72 5.64 5.04 5.65 6 5.69 5.47

DevOps 6.06 5.49 5.67 5.72 5.92 5.5 5.67 5.83
Incremental 4.89 5.33 5 4.55 5 6.33 4.33 5

Table 12: Average Rating for Current Experience

There can be many improvements to the results found in our
study with future work. The most significant improvement to our
study would be to have more participants overall and include par-
ticipants with experience in many models and models aside from
Agile. This would provide a more well-rounded set of opinions and
a better representation of software quality attributes while elimi-
nating the effects of having a small sample size. Each model could
be better compared to the other.

A differently formatted questionnaire or overall survey focus can
also provide a better comparison between each software engineer-
ing model. For example, each participant with experience in multi-
ple software engineering models can rank each model against each
other for each quality attribute; this is opposed to our study asking
each participant to rank one model. Allowing each participant to
compare models directly would allow the personal experiences of
each participant to be better represented.

Finally, our study did not collect more personal demographic
data. Future work can expand our findings by including age, gender,
more work experience, and other biographic information from
participants. This would allow better insight into which software
engineering model works better for a specific team.

Each software engineering model has its differences and benefits.
Each company, team, and project are different and have unique
requirements that must be fulfilled. Careful consideration of the
choice of software engineering model can ensure the best possible
software is produced. Our study suggests that Agile and DevOps
can produce high-quality software and work across many different
situations. This can be seen by the high adoption rate of the Agile
model and high mean ratings for the DevOps model. Agile and De-
vOps may work for many and should be considered for developing
softwares.

REFERENCES
[1] Muhammad Azeem Akbar, Jun Sang, Arif Ali Khan, Muhammad Shafiq, Shahid

Hussain, Haibo Hu, Manzoor Elahi, Hong Xiang, et al. 2017. Improving the quality
of software development process by introducing a new methodology–AZ-model.
IEEE Access 6 (2017), 4811–4823.

[2] Alexandra Altvater. 2020. What Is SDLC? Understand the Software Development
Life Cycle. https://stackify.com/what-is-sdlc/

[3] Tibor Bakota, Péter Hegedűs, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gy-
imóthy. 2011. A Probabilistic Software QualityModel. 2011 27th IEEE International
Conference on Software Maintenance (ICSM) (2011), 243–252.

[4] Youssef Bassil. 2012. A simulation model for the waterfall software development
life cycle. arXiv preprint arXiv:1205.6904 (2012).

[5] Raghavi K Bhujang and V Suma. 2017. Analysis of Risk In Software Process
Models. 2017 International Conference on Intelligent Sustainable Systems (ICISS)
(2017), 199–204. https://doi.org/10.1109/ISS1.2017.8389397

[6] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. 2011. A case study on
benefits and side-effects of agile practices in large-scale requirements engineering.
In proceedings of the 1st workshop on agile requirements engineering. 1–5.

[7] J. Boegh, S. Depanfilis, B. Kitchenham, and A. Pasquini. 1999. A Method For
Software Quality Planning, Control, and Evaluation. IEEE Software 16, 2 (1999),
69–77. https://doi.org/10.1109/52.754056

[8] Barry W Boehm, John R Brown, and Mlity Lipow. 1976. Quantitative evaluation
of software quality. In Proceedings of the 2nd international conference on Software
engineering. 592–605.

[9] Abhijit Chakraborty, Mrinal Kanti Baowaly, Ashraful Arefin, and Ali Newaz
Bahar. 2012. The Role of Requirement Engineering in Software Development
Life Cycle. Journal of emerging trends in computing and information sciences 3, 5
(2012), 723–729.

[10] K. Chari and M. Agrawal. 2018. Impact of Incorrect and New Requirements on
Waterfall Software Project Outcomes. Empir Software Eng 23 (2018), 165–185.
https://doi.org/10.1007/s10664-017-9506-4

[11] ISO DSTU. [n.d.]. IEC 9126–1: 2013. Prohramna inzheneriya. Yakist produktu.
Chastyna 1. Model yakosti (ISO/IEC 9126–1: 2001, IDT).[ISO/IEC 9126–1: 2001.
Software engineering. Product quality. Part 1: Quality model]. Kyiv, 2014. 20 p.

[12] John Estdale and Elli Georgiadou. 2018. Applying the ISO/IEC 25010 quality mod-
els to software product. In European Conference on Software Process Improvement.
Springer, 492–503.

[13] American Society for Quality. 2021. What is Software Quality? https://asq.org/
quality-resources/software-quality

[14] year = 2019 url = https://www.geeksforgeeks.org/software-engineering-failure-
of-waterfall-model/ GeeksforGeeks, title = Software Engineering | Failure of
Waterfall model. [n.d.]. .

[15] AmranHossain, MdAbul Kashem, and Sahelee Sultana. 2013. Enhancing software
quality using agile techniques. IOSR Journal of Computer Engineering 10, 2 (2013),
87–93.

[16] ISO. 2021. ISO/IEC 25010:2011. https://www.iso.org/standard/35733.html
[17] Ronald Jabangwe, Henry Edison, and Anh Nguyen Duc. 2018. Software En-

gineering Process Models for Mobile App Development: A Systematic Liter-
ature Review. Journal of Systems and Software 145 (2018), 98–111. https:
//doi.org/10.1016/j.jss.2018.08.028

[18] Parita Jain, Arun Sharma, and Laxmi Ahuja. 2018. The Impact of Agile Software
Development Process on the Quality of Software Product. In 2018 7th International
Conference on Reliability, Infocom Technologies and Optimization (Trends and
Future Directions)(ICRITO). IEEE, 812–815.

[19] Goran Jevtic. 2019. What is SDLC? Phases of Software Development, Models, &
Best Practices. https://phoenixnap.com/blog/software-development-life-cycle

[20] Kamaljeet Kaur, Anuj Jajoo, and Manisha. 2015. Applying Agile Methodologies
in Industry Projects: Benefits and Challenges. In 2015 International Conference on
Computing Communication Control and Automation. 832–836. https://doi.org/10.
1109/ICCUBEA.2015.166

[21] Gaurav Kumar and Pradeep Kumar Bhatia. 2014. Comparative Analysis of
Software Engineering Models from Traditional to Modern Methodologies. In
2014 Fourth International Conference on Advanced Computing Communication
Technologies. IEEE, 189–196. https://doi.org/10.1109/ACCT.2014.73

[22] Yu Beng Leau, Wooi Khong Loo, Wai Yip Tham, and Soo Fun Tan. 2012. Soft-
ware development life cycle AGILE vs traditional approaches. In International
Conference on Information and Network Technology, Vol. 37. 162–167.

[23] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and B. Natarajan. 2004.
Skoll: Distributed Continuous Quality Assurance. Proceedings. 26th International
Conference on Software Engineering (2004), 459–468. https://doi.org/10.1109/
ICSE.2004.1317468

[24] Ernest Mnkandla and Barry Dwolatzky. 2006. Defining agile software quality
assurance. In 2006 International Conference on Software Engineering Advances
(ICSEA’06). IEEE, 36–36.

[25] Munassar Nabil, Mohammed Ali, and AGovardhan. 2010. A Comparison Between
Five Models Of Software Engineering. International Journal of Computer Science
Issues (IJCSI) 7, 5 (2010), 94–101.

[26] Suryanto Nugroho, Sigit Hadi Waluyo, and Luqman Hakim. 2017. Compara-
tive analysis of software development methods between Parallel, V-Shaped and
Iterative. arXiv preprint arXiv:1710.07014 (2017).

[27] Pulasthi Perera, Roshali Silva, and Indika Perera. 2017. Improve software quality
through practicing DevOps. IEEE, 1–6.

[28] Leo Prada. 2021. Why waterfall development may still suit your organiza-
tion. https://www.itproportal.com/features/why-waterfall-development-may-
still-suit-your-organization/

10

https://stackify.com/what-is-sdlc/
https://doi.org/10.1109/ISS1.2017.8389397
https://doi.org/10.1109/52.754056
https://doi.org/10.1007/s10664-017-9506-4
https://asq.org/quality-resources/software-quality
https://asq.org/quality-resources/software-quality
https://www.iso.org/standard/35733.html
https://doi.org/10.1016/j.jss.2018.08.028
https://doi.org/10.1016/j.jss.2018.08.028
https://phoenixnap.com/blog/software-development-life-cycle
https://doi.org/10.1109/ICCUBEA.2015.166
https://doi.org/10.1109/ICCUBEA.2015.166
https://doi.org/10.1109/ACCT.2014.73
https://doi.org/10.1109/ICSE.2004.1317468
https://doi.org/10.1109/ICSE.2004.1317468
https://www.itproportal.com/features/why-waterfall-development-may-still-suit-your-organization/
https://www.itproportal.com/features/why-waterfall-development-may-still-suit-your-organization/

[29] G Gordon Schulmeyer. 2007. Handbook of software quality assurance. Artech
House, Inc.

[30] S Shylesh. 2017. A study of software development life cycle process models. In
National Conference on Reinventing Opportunities in Management, IT, and Social
Sciences. 534–541.

[31] Amninder Singh and Puneet Jai Kaur. 2019. Analysis of software development life
cycle models. In Proceeding of the Second International Conference on Microelec-
tronics, Computing & Communication Systems (MCCS 2017). Springer, 689–699.

[32] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L Bleris.
2002. Code Quality Analysis in Open Source Software Development. Information
systems journal 12, 1 (2002), 43–60.

[33] Andrew Stellman and Jennifer Greene. 2005. Applied software project management.
" O’Reilly Media, Inc.".

[34] Muhammad Asaad Subih, Babar Hayat Malik, Imran Mazhar, Amina Yousaf,
Muhammad Usman Sabir, Tamoor Wakeel, Wajid Ali Izazul Hassan, Muham-
mad Suleman10 Bilal-bin Ijaz, and Hadiqa Nawaz11. 2019. Comparison of agile
method and scrum method with software quality affecting factors. Int. J. Adv.
Comput. Sci. Appl 10, 5 (2019), 531–535.

11

	Abstract
	1 Introduction
	2 Problem Statement
	3 Background
	3.1 Software Development Phases
	3.2 Software Development Models
	3.3 Software Quality

	4 Study Design
	4.1 Participants
	4.2 Data Collection
	4.3 Methods
	4.4 Threats to Validity

	5 Results
	5.1 Demographics of Participants
	5.2 Previous Experience
	5.3 Comparison of Currently Used Models
	5.4 SE Model Evaluation

	6 Discussion
	7 Conclusion
	References

